On the Definitions of Nabla Fractional Operators

نویسندگان

  • Thabet Abdeljawad
  • Ferhan M. Atici
چکیده

and Applied Analysis 3 Definition 2.2. Let ρ t t − 1 be the backward jump operator. Then i the nabla left fractional sum of order α > 0 starting from a is defined by ∇−α a f t 1 Γ α t ∑ s a 1 ( t − ρ s α−1f s , t ∈ Na 1 2.4 ii the nabla right fractional sum of order α > 0 ending at b is defined by b∇−αf t 1 Γ α b−1 ∑ s t ( s − ρ t α−1f s 1 Γ α b−1 ∑ s t σ s − t α−1f s , t ∈b−1 N. 2.5 We want to point out that the nabla left fractional sum operator has the following characteristics. i ∇−α a maps functions defined on Na to functions defined on Na. ii ∇−n a f t satisfies the nth order discrete initial value problem ∇ny t f t , ∇iy a 0, i 0, 1, . . . , n − 1. 2.6 iii The Cauchy function t − ρ s n−1/Γ n satisfies ∇ny t 0. In the same manner, it is worth noting that the nabla right fractional sum operator has the following characteristics. i b∇−α maps functions defined on bN to functions defined on bN. ii b∇−nf t satisfies the nth order discrete initial value problem Δy t f t , Δy b 0, i 0, 1, . . . , n − 1. 2.7 iii The Cauchy function s − ρ t n−1/Γ n satisfies Δy t 0. Definition 2.3. i The nabla left fractional difference of order α > 0 is defined by ∇af t ∇n∇− n−α a f t ∇n Γ n − α t ∑ s a 1 ( t − ρ s n−α−1f s , t ∈ Na 1. 2.8 ii The nabla right fractional difference of order α > 0 is defined by b∇ f t Δnb∇ n−α f t Δ n Γ n − α b−1 ∑ s t ( s − ρ t n−α−1f s , t ∈b−1 N. 2.9 Here and throughout the paper n α 1, where α is the greatest integer less than or equal α. 4 Abstract and Applied Analysis Regarding the domains of the fractional difference operators we observe the following. i The nabla left fractional difference ∇a maps functions defined on Na to functions defined on Na n on Na if we think f 0 before a . ii The nabla right fractional difference b∇ maps functions defined on bN to functions defined on b−nN on bN if we think f 0 after b . 3. A Relation between the Operators ∇−α a and −α a In this section we illustrate how two operators, ∇−α a and −α a are related. Lemma 3.1. The following holds: i −α a 1f t ∇−α a f t , ii −α a f t 1/Γ α t − a 1 α−1f a ∇−α a f t . Proof. The proof of i follows immediately from the above definitions 1.1 and 1.2 . For the proof of ii , we have −α a f t 1 Γ α t ∑ s a ( t − ρ s α−1f s 1 Γ α t − a 1 α−1f a 1 Γ α t ∑ s a 1 ( t − ρ s α−1f s 1 Γ α t − a 1 α−1f a ∇−α a f t . 3.1 Next three lemmas show that the above relations on the operators 1.1 and 1.2 help us to prove some identities and properties for the operator∇−α a by the use of known identities for the operator −α a . Lemma 3.2. The following holds: ∇−α a ∇f t ∇∇−α a f t − t − a α−1 Γ α f a . 3.2 Proof. It follows from Lemma 3.1 and Theorem 2.1 in 13 ∇−α a ∇f t −α a 1∇f t ∇ −α a f t − t − a 1 α−1 Γ α f a ∇ { 1 Γ α t − a 1 α−1f a ∇−α a f t } − t − a 1 α−1 Γ α f a Abstract and Applied Analysis 5 α − 1 Γ α t − a 1 α−2f a ∇∇−α a f t − t − a 1 α−1 Γ α f aand Applied Analysis 5 α − 1 Γ α t − a 1 α−2f a ∇∇−α a f t − t − a 1 α−1 Γ α f a ∇∇−α a f t − t − a α−1 Γ α f a . 3.3 Lemma 3.3. Let α > 0 and β > −1. Then for t ∈ Na, the following equality holds ∇−α a t − a μ Γ ( μ 1 ) Γ ( μ α 1 ) t − a α . 3.4 Proof. It follows from Theorem 2.1 in 13 ∇−α a t − a μ −α a 1 t − a μ Γ ( μ 1 ) Γ ( μ α 1 ) t − a α . 3.5 Lemma 3.4. Let f be a real-valued function defined on Na, and let α, β > 0. Then ∇−α a ∇−β a f t ∇− α β a f t ∇−β a ∇−α a f t . 3.6 Proof. It follows from Lemma 3.1 and Theorem 2.1 in 2 ∇−α a ∇−β a f t −α a 1 −β a 1f t − α β a 1 f t ∇ − α β a f t . 3.7 Remark 3.5. Let α > 0 and n α 1. Then, by Lemma 3.2 we have ∇∇af t ∇∇n ( ∇− n−α a f t ) ∇n ( ∇∇− n−α a f t ) 3.8 or ∇∇af t ∇n [ ∇− n−α a ∇f t t − a n−α−1 Γ n − α f a ] . 3.9 Then, using the identity ∇n t − a n−α−1 Γ n − α t − a −α−1 Γ −α 3.10 we verified that 3.2 is valid for any real α. By using Lemma 3.1, Remark 3.5, and the identity ∇ t − a α−1 α − 1 t − a α−2, we arrive inductively at the following generalization. 6 Abstract and Applied Analysis Theorem 3.6. For any real number α and any positive integer p, the following equality holds: ∇−α a p−1∇f t ∇p∇−α a p−1f t − p−1 ∑ k 0 ( t − a p − 1α−p k Γ ( α k − p 1 ∇ f ( a p − 1, 3.11 where f is defined on Na. Lemma 3.7. For any α > 0, the following equality holds: b∇−α Δf t Δ b∇−αf t − b − t α−1 Γ α f b . 3.12 Proof. By using of the following summation by parts formula Δs [( ρ s − ρ t α−1f s ] α − 1 s − ρ t α−2f s s − ρ t α−1Δf s 3.13 we have b∇−α Δf t − 1 Γ α b−1 ∑ s t ( s − ρ t α−1Δf s 1 Γ α [ − b−1 ∑ s t Δs (( ρ s − ρ t α−1f s ) α − 1 b−1 ∑ s t ( s − ρ t α−2f s ]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the existence of solution for a $k$-dimensional system of three points nabla fractional finite difference equations

In this paper, we investigate the existence of solution for a k-dimensional system of three points nabla fractional finite difference equations. Also, we present an example to illustrate our result.

متن کامل

Matrix Mittag-Leffler functions of fractional nabla calculus

In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.

متن کامل

On certain fractional calculus operators involving generalized Mittag-Leffler function

The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...

متن کامل

Nabla discrete fractional calculus and nabla inequalities

Here we define a Caputo like discrete nabla fractional difference and we produce discrete nabla fractional Taylor formulae for the first time. We estimate their remaiders. Then we derive related discrete nabla fractional Opial, Ostrowski, Poincaré and Sobolev type inequalities .

متن کامل

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014